

CONNECTED OBJECTS FOR A GREEN WORLD ?

Damien WOHWE SAMBO (FUN Team – Inria Lille)

https://wsdamieno.github.io/Site_perso/#home

damien.wohwe-sambo@inria.fr

IIoT Department, **fortiss**, 1st August (Münich, Germany)

1 - 01/08/2023

Before we start, one word on my team

Research interests:

Internet of Things

- Wireless sensor networks, RFID, wireless robots networks
- Communications (MAC layer, routing, etc), Network security

7-9 PhD students, 3 Post-Doc, 2 Engineers, 1-2 VisitingPhD

https://team.inria.fr/fun/

Content

01. Context

02. IoT paths to a greener world

- Application 1
- Application 2

03. Proposed directions

Context

World orientation must change!

Climate changes: All the fields and domains are concerned

 \Rightarrow Even for the young IoT

Copyright 2022 Cagle Cartoons Copyright 2010-2023 Freepik Company S.L.

02

IoT paths to a greener world

The network of tomorrow, a more connected and environmentally friendly network environment ?

Connected objects for a green world !

Ínnía-

The network of tomorrow, a more connected and environmentally friendly network environment ?

Connected objects for a green world !

Agriculture \Leftrightarrow source of livelihood

- Agriculture as
 - Source of food supply;
 - Country development index;
- Lack of production ⇒ local food shortages;
- Africa spent \$64.5 Billions on importing foods (AfDB, 2017);
- Food import will increase to over \$110 Billions by 2025;

PAMACC¹ : "Agricultural production in Africa will explode if technologies are made available to producers"

¹Pan African Media Alliance for Climate Change (PAMACC) is an association of African journalists who report on climate change, environment, sustainable development and related subjects

Challenges of WUSNs in agriculture

- Communication medium:
 SOIL;
- Mitigation of wireless communications
- Changes of soil properties
 ink qualities;
- Water presence reflection, refraction, ... of the EM waves (radio);
- e.g. Intelligent watering system ;

Waste of energy when sending data not received

A model adapted to agriculture in Africa!

UG2UG, UG2AG et AG2UG
 AG2UG2AG;

$$W_{\#1} = -288.8 + 20 \log \left(d_1 \cdot d_2 \cdot d_{ug} \cdot \beta \cdot f^2 \cdot \sqrt{\frac{2R}{1+R}} \right) + 8.68 \alpha d_{ug}$$
(1)
$$W_{\#2} = -288.8 + 20 \log (d_1 \cdot d_2 \cdot d_{ug} \cdot \beta \cdot f^2) + 8.68 \alpha d_{ug}$$
(2)

[DAB2020]. **D. Wohwe Sambo**, A. Förster, B. O. Yenke, I. Sarr, B. Gueye and P. Dayang "*Wireless Underground Sensor Networks Path Loss Model for Precision Agriculture (WUSN-PLM)*", IEEE Sensors Journal, vol. 20, no. 10, pp. 5298-5313, 2020.

Experimental setup to collect data

Fig. Experimental onion field for the collection of data at the botanical garden of the Cheikh Anta Diop University in Dakar

[DAB2020]. **D. Wohwe Sambo**, A. Förster, B. O. Yenke, I. Sarr, B. Gueye and P. Dayang "*Wireless Underground Sensor Networks Path Loss Model for Precision Agriculture (WUSN-PLM)*", IEEE Sensors Journal, vol. 20, no. 10, pp. 5298-5313, 2020.

Results and validation of WUSN-PLM

Table 1: Evaluation of performances							
PRE	ACC	SEN	SEL	bACC	МСС	AUC	_
87,13 %	85 %	0.92	0.70	81.06 %	0.64	0.92	_

[DAB2020]. **D. Wohwe Sambo**, A. Förster, B. O. Yenke, I. Sarr, B. Gueye and P. Dayang "Wireless Underground Sensor Networks Path Loss Model for Precision Agriculture (WUSN-PLM)", IEEE Sensors Journal, vol. 20, no. 10, pp. 5298-5313, 2020.

Need of a decision-making tool:

SEND or NOT ?

FuzDeMa

Need of a decision-making tool:

Based on Sugeno FIS:

- 4 inputs ;
- 36 rules ;
- 1 output (probability of packet's reception) ;

Pon't Know

What

an here!

Ich bin da

Εδώ είμαι 🤇

Je suis là

我在这里

Aquí estoy

Quick overview of FuzDeMa

[DBA2022]. **D. Wohwe Sambo**, B. O. Yenke, A. Förster, I. Ndong, P. Dayang and I. Sarr, "A New Fuzzy Logic Approach for Reliable Communications in Wireless Underground Sensor Networks", Springer Nature – Wireless Networks, vol. 28, no. 7, pp. 3275-3292, 2022.

Evaluation et validation

Evaluation of the performances : SEN, bACC, MCC & AUC;

	Sensibility (SEN)	Balanced accuracy (bACC)	Phi coefficient (MCC)	Area Under the ROC Curve (AUC)
Modified Friis	0.9	75.77%	0.52	0.83
NC Modified Friis	0.9	72.03%	0.35	0.87
WUSN-PLM	0.917	81.061 %	0.643	0.92
FuzDeMa	0.969	88.21	0.798	0.92

Table 2: Performance evaluation

- MCC = 0.798 → strong correlation between the obervation and the prediction;
- AUC = 0.92 ⇔ 92% chance to do the difference between the reception and not reception of a data.

[DBA2022]. **D. Wohwe Sambo**, B. O. Yenke, A. Förster, I. Ndong, P. Dayang and I. Sarr, "A New Fuzzy Logic Approach for Reliable Communications in Wireless Underground Sensor Networks", Springer Nature – Wireless Networks, vol. 28, no. 7, pp. 3275-3292, 2022.

Evaluation of the energy consumption

- 2 possibilities:
 - The gateway is reachable; ①
 - The gateway is not reachable; ②

FuzDeMa:

- With TX; 3
- No TX; (4)

Table 3 : Evaluation of the energy saved by FuzDeMa according to the data statement

	Energy saved	Data	Observations
True Negative (TN)	81.7876 μJ	Not send & not received	No reception
False Negative (FN)	8.287 μJ	Not send & not received	Reception
False Positve (FP)	65.3007 μJ	Send & not received	No reception
True Positive (TP)	-8.2 μJ	Send & received	Reception

[DJN2023]. **D. Wohwe Sambo**, J. Dede, N. Mitton and A. Förster, "FuzDeMa: A portable Fuzzy based Decision-Making tool for reliable communication in Wireless Underground Sensor Networks", ITU Jounal – Future and evolving technologies, in press, 2023.

Generalization of FuzDeMa and validation

Parameters	Definitions	Evaluation of the energy gained of		
Ν	Number of nodes	FuzDeMa after k rounds ($k = 1000$)		
E_i	Energy consumed/round of node i (without FuzDzMa)	8		
E'_i	Energy consumed/round of node <i>i</i> with FuzDeMa	6 Energy gain * Optimal point		
P _{comp}	Energy consumed/round due to MC computation			
tx _{cost}	Energy consumed/round during transmission	$(\eta)^4$		
fuz _{cost}	Addition energy cost/round of FuzDeMa	ave		
k	Random number of rounds			
α	Number of reception	Number of receptions		
G_i	Energy saved by node i (FuzDeMa) after k random rounds			
$E_i = P_c$ $E'_i = \begin{cases} \end{cases}$	$\begin{array}{ll} & & \\ & & \\ & & \\ & E_i + fuz_{cost} \\ & & \\ & E_i + fuz_{cost} - tx_{cost} \end{array} \begin{array}{ll} \text{If transmission (TX)} \\ & & \\ & \text{else} \end{array} $	$\overset{-2}{\overset{-4}{_{0}}}$		
Since tx_{co}	$a_{ost} > fuz_{cost}$ When $\alpha \le \left \frac{k(tx_{cost} - fuz_{cost})}{tx_{cost}} \right $	$\left \Rightarrow \boxed{G_i = tx_{cost}(k - \alpha) - kfuz_{cost}} \right $		

The network of tomorrow, a more connected and environmentally friendly network environment ?

Connected objects for a green world !

The network of tomorrow, a more connected and environmentally friendly network environment ?

Connected objects for a green world !

Ínnía_

Today's supply chain

- Take Make Waste ;
- **50%** of waste is packaging

Reusable packaging

Reduction of wastes

Productivity

Profitability

AIRBUS

Reusable packaging challenges

Difficulty in managing the conditions of reusable packaging;

E.g.

Responsability assignation through NDP

- NDP : Neighbour Discovery Process
- Assigning responsibility for a reusable package using its neighborhood;
- Embedded devices are multi-wireless communication technologies;
- Synchronisation of communication: *Listening when others are speaking*;
- IoT must stay alive longer than a reusable packing (7 years);

- Find out as quickly as possible which nodes are most relevant;
- WuR for synchro. , BLE for the NDP and LoRa to send.

2 rounds NDP

Proposed discovery process – 1st round

<u>Scanner</u>: A node that needs to discover its neighborhoods and start the neighbor discovery process

Proposed discovery process – 1st round

<u>Advertiser:</u> A node that replies to a neighbor discovery request

Proposed discovery process – 2nd round

Synchronisation and reduction of collisions

Application 2 - WUBBLE: Energy Efficient BLE Neighborhood Discovery Leveraging Wake-up Radio [*]

The scanner stops the advertisers when it has found the K nodes;

[*]. N. E. Hoda Djidi, **D. Wohwe Sambo**, M. Gautier, O. Berder and N. Mitton, "WUBBLE: Energy Efficient BLE Neighborhood Discovery Leveraging Wakeup Radio", IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Submitted in ALGOWIN 2023). Application 2 - WUBBLE: Energy Efficient BLE Neighborhood Discovery Leveraging Wake-up Radio [*]

Energy conso. w.r.t number of nodes found

[*]. N. E. Hoda Djidi, **D. Wohwe Sambo**, M. Gautier, O. Berder and N. Mitton, "WUBBLE: Energy Efficient BLE Neighborhood Discovery Leveraging Wakeup Radio", IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (Submitted in ALGOWIN 2023). The network of tomorrow, a more connected and environmentally friendly network environment ?

Connected objects for a green world !

The network of tomorrow, a more connected and environmentally friendly network environment ?

Use existing systems for new applications?

03

Proposed directions

Ínría_

Ínría_

Ínría_

Ínría

Ínría

Independent connected object systems

Independent connected object systems

Reuse of connected object systems ?

New applications with existing systems

Reuse of connected object systems ?

New applications with existing systems

Reuse of connected object systems ?

New applications with existing systems

Reuse what exist to avoid proliferation

Compression and fragmentation of packets

Reprogramming of the connected devices

Close and edge intelligence

 \bigcirc

THANK YOU FOR YOUR ATTENTION

Innia

Thank you ! Get in touch with me

damien.wohwe-sambo@inria.fr https://wsdamieno.github.io/Site_perso/#home

About Me

Services to the scientific community

- Co-organizing of an international workshop : LS-NoT 2023 (with proceedings) co-located to IEEE-DCOSS 2023;
- **TPC member** : DCOSS 2024, ANT 2023, AlgoTel/CoRes 2023, CNRIA 2023.
- Reviewer for high ranked scientific journal/conferences:
 - Journals: IEEE Internet of things, IEEE sensors journal, EURASIP (Springer), Computer Communications (Elseviers), Applied soft computing (Elsevier), AEÜ (Elsevier), Optimal Control, Applications and Methods (Wiley), Peerj Computer Science, etc.
 - Conferences: IEEE GLOBECOM 2022, MSN 2022, PerCom 2023, IEEE ICC 2023, CNRIA 2023, etc.
- Vulgarisation : scientific talks at conferences :
 - IHAD 2023 (University of Luxembourg);
 - « Journée LPWAN » of GDR RSD;
 - Annual COPAIN research team seminar

What to remember about me

Current position

Post doc INRIA (FUN team) in IoT

Teaching activities

Fundamentals and specialised units

In Universities : Unv. of Lille and univ. of Ngaoundéré

In Engineering schools : Centrale (Centrale Lille & ITEEM) and IMT Lille-Nord

<u>Levels</u>: From L1 to M2/ Ing. 3A

594 h eq. TD in CM, TP and TD;

Research activities Theories + Practices

Research field: IoT

Previous works: Wireless Underground Sensor Network and Industry 4.0

<u>Publications</u>: 6 journals, 2 Int. Conferences, and 1 Nat. Conference <u>Submitted</u>: 1 journal (accepted), 2 Int. Conference

Citations: 209*

*. Source: Google scholar : "Damien Sambo" (visited 23/04/2023)

Current position

- Since June 1st, 2022: Post-doc in IoT;
- Institution (team): INRIA FUN research team
- Supervisor: DR Nathalie Mitton
 - Project: GoodFloow (funded by ADEME);
 - Collaboration between: IMT Lille-Europe, IRCICA, Inria, IMT Atlantique, Irisa.
 - Main purpose: reduction of the carbon footprint in industry by optimising the supply chain;

Problems addressed: energy consumption, sychronisation of communications, quality of services, latency, collision reductions.

Application domains: Industry 4.0, ecology.

Education : Ph.D.

- Ph.D. thesis: « Conception of a wireless underground sensor network for precision agriculture »
- Supervisors: Prof. Dr. A. Förster (Bremen) & Profs. B. O. Yenke & P. Dayang (Ngaoundéré)
- Defended on the 23rd July 2021 in Bremen;

• **3 scholarships**: INTRA-ACP, ERASMUS + and AUF

Education : Master of Science (MSc.)

• Master :

- Distributed systems;
- Software engineering;
- Etc.

- Research area: Internet of Things.
- Problematics addressed: Energy consumption, quality of service, multitasking, etc.
- Beginning of the passion for the IoT;
- <u>Master thesis</u> [BDA2016] : « Une approche efficace de multithreading dans les réseaux de capteurs sans fils »

- Decongestion of central nodes (e.g. CH);
 - Based on protothreads;
- Contiki (Cooja) Telos B;
- Better ratio performance/ energy consumption;

[BDA2016] - Blaise Omer Yenke, **Damien Wohwe Sambo**, Abba Ari Adamo Ado, and Abdelhak Gueroui, "MMEDD : Multithreading Model for an Efficient Data Delivery in wireless sensor networks", International Journal of Communication Networks and Information Security (IJCNIS), vol. 8, no. 3, pp. 179–186, 2016, ISSN: 2073-607X.

Stop proliferation of a new waste's types

Instead of endless deployments, if we reuse existing?

